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regression programs. The data set is notoriously difficult to handle
computationally. In this paper, the singular value decomposition and

the QR factorization are used to show that very small perturbations in
the data render it colinear, thus accounting for the computational dif-
ficulties. Another analysis, based on coefficients that bound pertur-
bations in the regression coefficients in terms of perturbations in the
columns of the data, also shows the extreme sensitivity of the problem.
An analysis is also given of a perturbation index, introduced by Beaton,
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1. Introduction /4 5.3

In a study of programs for solving regression problems, Longley

[5) introduced a set of economic data on which several programs failed

to compute acceptably accurate regression coefficients. Recently Beaton,
Rubin, and Barone [1, hereafter referred to as BRé} showed that the re-
gression coefficients are more affected by errors in the data itself

than by rounding errors due to any reasonable computational scheme. In
summary, they made the conservative assumption that the data was accurate
in all reported figures and introduced pseudo-random perturbations uni-
formly distributed between -5 and 4.999 in the first unreported digit,

so that the perturbed data rounded back to the original at the assumed
number of significant digits. One thousand such data sets were generated,
and regression coefficients were computed for each set, care being taken
that rounding errors in the computation had negligible effects.

Each regression coefficient was found to vary in both sign and
magnitude over the perturbed data sets. Moreover, the medians of the
coefficients were not near the corresponding coefficients of the original
problem, in spite of the fact that the perturbations in the data were
symmetric. To explain this phenomena, a 1imiting solution, valid for

large numbers of observations, was derived, along with a "perturbation

index", which perportedly measures the sensitivity of the regression
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coefficients to errors in the data. Beaton, Rubin, and Barone conclude
that "the use of stable algorithms and high precision is not likely to
yield a valid answer without more accurate data" and that the perturbation
index should "be used routinely to indicate the existance of severe insta-
bilities in regression solutions."

The author agrees wholeheartedly with the first of these conclu-
sions -- especially with the implication that what seem to be numerical
problems may instead be symptoms of more fundamental statistical diffi-
culties. However, there are easier ways to see that the Longley data
set is a hard case than performing a large simulation experiment. One
of the purposes of this paper is to present three ways, two of which
provide a plausible explanation for the behavior of the medians of the
regression coefficients. Specifically, we shall show that there are
data sets with exact colinearities within the domain of perturbations
considered by BRB. Moreover, we shall give reasons for believing that
the perturbations introduced by BRB actually tend to make the problem
better behaved, this bias accounting for the bias in the coefficients.

The third approach is to compute numbers that measure how sensi-
tive the individual regression coefficients are to perturbations in the

individual variables of the data set. These sensitivity coefficients

immediately show that no accuracy can be expected in the regression coef-
ficients in the presence of perturbations of the size considered by BRB.
The results of the sensitivity analysis are at variance with what
the perturbation index implies about the coefficients. Accordingly, a f
section of this paper is devoted to an analysis of the asymptotic properties
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of the perturbation index, in which it is shown that it is a valid
measure of sensitivity only when the number of observations is very
large. ‘

It will sometimes be convenient to cast the results of this
paper in the language of norms. We shall use the vector 2-norm defined

for any vector x by

ixpy = (zxf)llz.

For any matrix X we shall use either the Frobenius norm defined by

1/
_ 2 1o

or the spectral norm defined by

hixily = sup MX xll .
xi=1

The appearence of ||XI| without a subscript in any statement means that
the statement holds for either the Frobenius or the spectral norms. For
a review of the properties of these norms see [6]) .

I would like to thank Kathy Schmidt for her programming and com-
putational help and David Hoaglin for his comments on a preliminary version

of this paper.

2. The Longley data set

We consider the usual regression model

y =Bl +Xs+e

e
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where 1 = (1,1,...,1)T and X 1is a 16x6 matrix. The columns x;,...,Xq
of X contain observations of six independent variables, and the vector
y contains observations of the dependent variable. Table 1 contains
these observations*, along with the regression coefficients BysBqse++sBg
(for further derived data, such as means, correlations, etc., see [1] ).

We shall follow BRB in regarding this data as fixed and consider-
ing the effects of perturbations on the regression coefficients. Unless
ctherwise stated, the perturbations will be restricted to the interval
[-.5, .5] so that any perturbed data set rounds back to the original.
This restriction is very conservative, since it is unlikely that any of
the variables XpsXgse-+sXg are known to more than three figures.

We shall have occasion to work with the adjusted matrix Xa ob-

tained from X by subtracting column means; i.e.

4 T
Xa =X - }m ’
where 1
e
o T i

Since the adjustment of X 1is by an additive factor, a perturbation in
X corresponds to an identical perturbation in Xa. However, if we per-
turb xa to get ia and form X = ia + ;mT, the resulting i adjusts

back to ia if and only if

* For the variable X, we have reported the original data times ten,

80 that the perturbations defined below will have uniform ranges and
variances.
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(2.1) 1

Thus if we wish to induce perturbations in X by perturbing Xa we
must take care that (2.1) is satisfied. This point will prove important

in the next two sections.

3. Singular value analysis

It is well known (e.g. see [6] ) that for any nxp matrix X

with n>p, there are orthogonal matrices U and V such that
T M

(3-1) Uu'xy = 0 )

where

M= diag(u19U2"°"u )

p

and

My 2 Mg 2...2 ”p 2 0.

The decomposition (3.1) is called the singular value decomposition of

X. The numbers Hpslgse e sl are the singular values of X and the
columns of U and V are respectively the left and right singular vec-

tors of X. If U is partitioned in the form
U= (UI’UZ)
where U1 is nxp then

(3.2) X = UM,
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an expression which is sometimes called the singular value factorization
of X.
The singular value decomposition has an important approximation

property. Given the integer ksp, let

M

[]

diag(ul,...,uk,o,...,O),

and let

(3.3) X ulﬂvT.

Then X has rank less than or equal to k, and for any nxp matrix Y

of rank less than or equal to k
X - X2 < ix - vit2,

Thus X is a matrix of rank less than or equal to k that is nearest
to X in the least squares sense, and X is easily computable from the
singular value factorization of X.

This method of obtaining nearby matrices with colinearities may
be applied to the Longley data set. If we compute the singular value
decomposition of the matrix Xy for the Longley data set (the LINPACK
code SSVDC was used [3] ), we get the following sequence of singular

values, rounded to two places:
(3.4) 3.9.10°, 4.7.103, 1.7.10%, 1.3.10%, 3.7-10%, 6.7.10°1,

The smallest singular value is near the error range described in §2.

Accordingly, we set it to zero and compute ia in analogy with (3.3) as




(3.5) Xa = UIMV
and then form
A T
X = Xa + Im .

In order for this process to be legitimate, the condition (2.1)
must be satisfied, so that the adjusted X is the rank defficient matrix
Xa‘ Since M is nonsingular, it follows from (3.2), with X replaced by

X. that

a o -1
Uy = X,VM

Since 1'X_ = 0, it follows that 1'U; =0 and
| TR . )
1%, = 1Ty fv'= o,

which is just the condition (2.1).
The first and sixth columns of X are reproduced to eight figures
in Table 2 (the deviations of the other columns were below the level of 1
rouncing error). The largest deviation from X occurs in the year 1951
and has a value of 0.4196. Thus the perturbations are well within the
range described in Section 2. It follows that, for all one knows, the
“"true" values of the Longley data set could harbor an exact colinearity.
In particular, within the domain of matrices treated by BRB, there are
points where the regression coefficients fail to exist, and near these
points the coefficients can become arbitrarily large. Under the circum-
1 stances, it is not surprising that the coefficients behave erratically.

However, we believe that the shifting of the centers of the coef-

ficients observed by BRB is due to the surprising fact that the pertur-

bations tend to move the problem away from the singularities just mentioned.




2. Rank Deficient Approximations to X

SVD QR
Xl X6 x6

829.99998 1946.9943 1946.9942
865.0G009 1948.0257 1948.0257
881.93992 1948.9759 1948.9759
894.99996 1949.9891 1949.9891
962.00146 1951.4196 1951.4196
981.00058 1952.1662 1952.1662
989.99931 1952.8004 1952.8004
999.99956 1953.8733 1953.8733
1011.9999 1954.9580 1954.9580
1045.9991 1955.7386 1955.7386
1083.9991 1956.7529 1956.7529
1107.9999 1957.9848 1957.9848
1126.0004 1959.1098 1959.1098

i 1141.9998 1959.9358 1959.9358

: 1157.0004 1961.1113 1961.1113
1169.0006 1962.1646 1962.1646
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To see how this may happen, we must look at the effects of perturbations
in a matrix X on its smallest singular value. Let X=X+ E, where
we assume that the elements of E are uncorrelated with mean zero and

common variance 02. From (3.2) it is easy to see that the eigenvalues :

of XTX are u%,ug,...,us with corresponding eigenvectors VisVpseeosV

p’ L5

where vj is the j-th column of V. It follows that the square ﬂg of «

the smallest singular value of X 1is the smallest eigenvalue of

T T T ;

(x+E)T(x+E) = xx+XxTE+EX+EE.

The first order approximation to ﬂﬁ is given by v;(x +E)T(X + E)vp

e e oo
(e.g. see 1[6]). If we use the facts that By, = wu and X Uy = gV

then \

4
N
—

vy + WIXTEy. + VETXv. + vIETWUEY

P p P P P P P P p

=
n

2 T Bt T
+ 2 + 3 .E .E
bp ¥ ZupupEyy i=1(“1 vp) (U5EV,)

(3.6)
= us + Zupu;Evp * (u;Evp)2 + 1_gl(u;!-livp)z
i#p
= (up + u;Evp)2 * 1,
where
2 = z?=1(u1Evp)2.

ifp

From the distributional assumptions on E and the orthonormality

of the uj and the vj, it follows that

ML Ay . ¥ : = ‘“"\’?;M’.“ o




(3.7) E(x%) = (n-1)e2.

Thus (3.6) partitions the first order approximation to ﬂg into two
terms, one the square of a term deviating from Mp by a quantity with
standard deviation o and the other a sum of squares with mean (n-l)oz.
As long as ¥p is sufficiently larger than o, the fluctuations in Lp
are almost entirely due to the first term. But as My approaches o,
the second term will dominate, and tend to increase the value of My

To summarize this informal argument: if the elements of a matrix X are

perturbed by guantities nearly equal to its smallest singular value, the

perturbations will tend to increase that singular value.
2

In the case of the BRB experiments, we have ¢~ = 1/12 and

ug : .45. From (3.7) it follows that

E(<%) = 1.25.

Thus the rz term dominates, and the effect of the perturbations is for

the most part to produce a better behaved problem with ue increased.
We believe that this bias toward nicer problems is the cause of the bias
in the perturbed coefficients observed by BRB.

In the foregoing we have taken care to scale the columns of X
so that the presumed uncertainties in the data are all equal. This has
the effect of making the singular values readily interpretable in terms
of the matrix X; the suppression of a singular value less than the un-
certaintity will cause the elements of X to be perturbed by quantities

of the same magnitude. On the other hand, if the variables were scaled

prw oy
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‘ so that the uncertainties were disparate, the suppression of a small
singular value could overwhelm a still smaller uncertainty in a partic-
ular column. We mention this point because it is a common practice to
scale Xa so that its columns have norm one (in which case the columns
of V are the principal components of the problem). Whatever the merits
of this approach in other circumstances, it is clearly not the thing to

do here.

4. Analysis via the QR decomposition

A comparison of Table 2 with Table 1 shows that the perturbations
introduced by the singular value analysis occur mostly in the time vari-
able Xg: This suggests the possibility of obtaining a singular pertur-
bation of X by changing only the sixth column. In this section we shall
show how the QR decomposition may be used to find such a perturbation.

Given any nxp matrix X with n2p, there is an orthogonal matrix

Q such that

(4.1) QX = (g‘

where R is upper triangular (e.g. see [6] ). This decomposition of
X s called the QR decomposition. If we write Q = (Q;,Q,), where Q;

is nxp, then it follows from (4.1) that
(4.2) X = QIR’

and (4.2) is called the QR factorization of X.
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The QR decomposition is a useful computational and theoretical
tool in linear regression; however, for our purposes we need only the
following approximation theorem, which appears to be new.

Theorem 3.1. In the QR decomposition (4.1), suppose that R is

nonsingular. Let R be obtained from R by setting r__ = 0, and let

pp

(4.3) X = Qli.

Then X differs from X only in its p-th column, and rank(X) = p-1.
Moreover, if Y is an nxp matrix that differs from X only in its

p-th column and satisfies rank(Y) s p-1, then
(4.4) X - X < px - vl . -

Proof. By construction R and R differ only in their (p,p) -

elements. Hence, X and X differ only in their p-th columns. Moreover,

R is of rank p-1, and therefore so is X.
To establish (4.4), let R be partitioned in the form
R! r
0

P
1]

"pp
where R' is of order p-1. Let yp denote the p-th column of Y, and

partition z = QTyp in the form

D R

e
gy

e
b S A M R e

N e, 1T TR SR o B e
5 4 " = = ke Y ¥ 3 s

ladic
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where zy is a (p-1)-vector and z, 1is a scalar. Then

R' r
Q%= (0 o
0 0
and
: R z1
QyY-= 0 z,
0 z3
It follows that
nl 2
> X - = ;
(4.5) X - xn Yoo

Now for Y to have rank p-1, the quantities z, and zq must be zero.

Hence

2

2y 2
(4.6) WX -yl = (r - zﬂl + rpp :

The inequality (4.4) follows from (4.5) and (4.6).
The application of this theorem to the Longley data set is similar
to the singular value analysis. The QR decomposition of the matrix Xa

was computed by the LINPACK routine SQRDC [ 3] . The element
Yée ® 0.6693051

of R was set to zero to give R and ia computed in analogy with (4.3)

as
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An argument similar to the one in the last section establishes that
;TQI = 0. Hence ia satisfies (2.1), and we may add means as usual to
get X. The sixth column of i, which is the only one that has been al-
tered, has been appended to Table 2. The largest deviate corresponds
to the year 1951 and has a value of 1951.420, so that X again lies
within the range of perturbations considered by BRB.

We observed in connection with the singular value decomposition
that perturbations could tend to make a problem better behaved. Much
the same thing can occur with errors introduced into a single column.
Specifically, let X have the QR decomposition (4.1) and let X be
obtained from X by adding to xp a vectur e whose elements are un-

correlated with mean zero and common variance 02. Let f = QTe. Then

if we partition f in the form

—”

where f, is a (p-1)-vector and f, is a scalar, we have in the nota-

tion used above,

R' r+t¢t

1
g Ts
} Qx= (0 rpp+f2
' 0 f3

It follows that the (p,p)-element of R satisfies

e

2
"pp

= (r + f2)2 + f3 s

PP
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and
E(NF407) = (n-p)o? .

If r is near o in magnitude, the term |lf3ﬂ2 will tend to dominate

pp
di s
and increase rpp
For perturbations in the variable Xg of the Longley data set we
have
(n-p)02 5 -%-—= .83
which clearly dominates rip = .45. Although this analysis does not

strictly apply to the perturbations considered by BRB, since it assumes
the other variables are not perturbed, it none the less gives a fair

indication of what is going on. In ten simulations, done by the author

for other purposes, it was observed that the average value of rz was

pp

1.2, which is in fair agreement with expectation 1.37 of r in (4.7).

PP
For this data set, the QR decomposition yields much the same results

as the singular value decomposition. However, this is in part due to
the fortuitous ordering of the variable Xgs another ordering of the
columns could give different results. In general, it may be necessary

to inspect r for different orderings. There is no need to examine

PP

all 2p-1 orderings, since the value of r depends only on the vari-

pp
able that is placed last and not on the ordering of the other variables.
Efficient algorithms exist to determine these p different values of

r after R has been computed once for a specific ordering [}, Ch.lol ;

PP
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5. Sensitivity coefficients

The results of the last two sections suggest that the regression
coefficients for the Longley data set will be extremely sensitive to
perturbations in the variable Xg and, to a lesser extent, in the vari-
able X, For sufficiently small perturbations, we can make this pre-
cise by computing linear approximations to the perturbations in the
regression coefficients. In this section we shall summarize the results
of such an approach. The reader will find details in [4] or [8].

In a general regression model with regression matrix X, assume
that S 1is of full rank so that the vector of least squares coerficients

is given by

T

(5.1) g = (xx) Ay = oxy = xty ,

where for later use we have set
¢c= (x"x)?
and
xt = (xTx) T

( X" is the pseudo-inverse of X ). From (5.1) it is evident that if
X s restricted to a sufficiently small neighborhood of X, then

g = X y is a differentiable function of X. In particular, if we write
51 as a function of the j-th column of X, say

By = figlxy)
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then B8, can be expressed in the form

(5.2) By = By * F1500G) (5 - xg) + 0% - xg1D)

where the row vector f{j(xj) is the gradient of fij evaluated at

Xge It turns out that there is an easy expression for f%j(xj) and its
norm ;.

Theorem 4.1 4,8 . Let x§+) denote the i-th row of Xf, and

let
p=y =Xg .
Then
' o Lak S0 T
and

ij = || f,ij(xj)“z o B§C” » "'“ZCEJ .

There are two ways in which this theorem can be applied. In the

first place, it follows from (5.2) that

2)'

1By = Bl < vyglixg = x5l + 0xg - xg0

Thus if we can place a bound on the size of the perturbation ij - xj

in X3 and the perturbation is sufficiently small*, then *13" xj - xj“

*This will be true if § Xty ;‘j - XJ“ is significantly less than one,
say less than 0.2, a result which can be derived from theorems in [7].
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estimates the perturbation in 8i due to the perturbation in xj.

For this reason we shall call a sensitivity coefficient.

'Y-ij
A second approach is to make distributional assumptions about

the components of ij - xj, say that they are independently distributed

2

with means zero and common variances o°. Then the variance of the ap-

proximation
A ) g! = . R ~. - X,
(5.2 By = By * Fij(xy) (x5 - x;)
" ngoz, so that again y;, estimates the variability of £, due to

perturbations in Xje However, some care is required here. If the dis-

tribution of ij - xj is continuous and nonzero at a singularity of X,
then we cannot guarantee that the moments of éj exist. This will always
be the case if X5 = X is normally distributed. Intuition suggests
that if 02 is small enough then E; will accurately approximate éi
except in a region of low probability, so that yfjoz will adequately
describe the variability of éi; however, this area needs further study
The sensitivity coefficients can easily be computed from quantities
normally generated in the course of solving regression problems. We have
done this for the matrix Xa obtained from the Longley data set and the
adjusted vector Y "y~ (}Ty);/IG. Since the regression coefficients
differ widely in magnitude, we report Yij/ By in Table 3. These
scaled coefficients measure the sensitivity of the relative error

|§1 - B1l/|81l ; if this error if less than 10~ then 51 and B

agree to about S significant figures.




3. Relative sensitive coefficients Y'Ij/Bi

3
K 1 2 3 4 5 6

1
1 (477107 1.4-10°  4.00102  2.0-100%  8.3-10°3  3.4-10!

!
2 |s.1-1002 33900 7510 3.3-1008  1.77100%  6.5.1073
3 1,102 8.1.10° 2.010% 8.810% 4.110% 1.7-10° ]
s 61103 4.0010° 15100 8.3.100%  9.4-100°  1.3-10° i
5 [2.4-100! 1.3.100% 3.3:20% 1.510% 9.9-10% 2.7-101 \i
6 ]4.1-10’3 720" e avalt zawwt e
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The coefficients confirm our conclusions about the sensitivity
of the problem to perturbations in X1 and Xg* For example, the
coefficient 716/81 is 34. If we consider perturbations introduced by
rounding the elements of Xg in the s-th place beyond the decimal, then
the maximum such perturbation is £5:-1075. If follows that
IXg - Xgl| s 20-107%; hence

L < 34.20.10°°
To be sure of one figure of accuracy in ,él’ we must have 34-20-10°° € 1
or s 2 4. The corresponding perturbation of :tS-lO'4 years amounts to
about t4.4 hours. Although this is a worst case analysis, it reflects
the extreme sensitivity of 81 to perturbations in Xg5 @ probabistic
analysis would give only slightly less dramatic results. The sensitivity
coefficients also show that By and ~es are quite sensitive to pertur-
bations in Xq-

We must insert a word of caution here. The results of the last
three sections all agree in condemning the variable Xg as a trouble
maker, and to a lesser extent the variable X, It is tempting to con-
clude that all will be well if we exclude xg and x, from the model.
However, the sensitivity of the coefficients to Xy and Xg is a func-
tion of the entire model. There is no reason to expect that either Xg
or xi cannot behave themselves in a reduced model. The techniques we
have described in this paper are designed to detect trouble, not to rem-

edy it, and we discourage their naive application to the variable selec-

tion problem.
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6. Limitations of a perturbation index.

The first order perturbation theory of the last section is sharp
in proportion as the variance is small. A different approach would fix
the variance of the errors and investigate what happens as n becomes
large. This case has been analyzed in L1} and [2]. In this section
we shall be concerned with how large n must be for the analyses to be
applicable.

The basic results are derived as follows. We begin with a sequence
of regression problems with full rank nxp matrices X, (e 1,2,005)
and observation vectors Yn (n=1,2,...p). The coefficient vectors bn

are given by
= gty welT
bn = (ann) Xnyn ;

We suppose further that there is a limit problem in the sense that there

is a positive definite matrix A, a p-vector c, and a scalar n2 such

that
Lk e
Timn XX =A,
i n"n
(6.1) _1 T
Tim n °X =cC,
b n’n
and
(6.2) lim n~! Yn 2, nz.
| n->w
It follows that
| -1, _
| limb_= A “c = b.

n->w
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Now suppose that we are actually given the matrices

Xn = Xn + En,
where the elements of En are assumed to be uncorrelated with mean zero
and common variance 02. The coefficient vector obtained by working with

in instead of X s given by

(6.3)
T

g o ) T TR 0K SO
= [n2oxTx, + oTE, + Elx 4 EE) " nlxly, + Ely )

nyn

The limits in probability of the terms in the right hand side of
(6.3) can easily be evaluated. From the assumptions on E, we have

immediately that

plim n"H(EJE ) = 1.

n->o’

Next, from (6.1) it follows that if xgn) denotes the i-th column of

Xn, then
(n) 2
tim W0
(6.4) poom TR 8y
Hence n'llzxn is bounded and
T
X E
plim "nn _ 4

n->w n
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Finally, from (6.2) it follows that n~ Y/ Zyn is bounded and

plim
n->w n

Hence

plim Bn = (A+ cZI)'lc.
n->e
Equation (6.5) shows clearly that plim En differs from the
true solution b by quantities that depend on the variance of E. We

may obtain specific bounds for this difference by applying results from

standard matrix perturbation theory (e.g. see |61 ). Specifically, if
(6.6) Al Al <1
then (A + ozl) is nonsingular and

b - plim b || 2)) am1y)
& T

Since trace(A'l) zl\A'lﬂ , we may replace the condition (6.6) by
2
o“trace(A) < 1
and the bound (6.7) by

b - plim bnn

-1)
o )

cztrace(A
1- ézfrace(A'l)
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The right hand side of (6.7) or (6.8) is a relative error in
the vector 8. If it is of order 10'5, then the largest components of
plim En will be in error in about their s-th digit. The bounds may

then be interpretated as saying that if either ozllA'lﬂ or

2

g trace(A'l)

is near one, the plim of Bn may differ entirely from b.

2

For this reason, BRB call o trace(A'l) the perturbation index for the

problem and recommend that it be monitored to determine the sensitivity
of the probiem to errors in the variables.
To compute the perturbation index for the Longley data set, we

approximate A = xlxa/ls. Now

- 1
t\r'ace(Xa . 7ttt o,
Ul Uz UG

where the u. are the singular values displayed in (3.4). Thus
i
trace(A'l) = 36.8

For uniform errors in the first unreported figure, we have o2 = 1/12,
so that the perturbation index is about three, which gives ample warning
of trouble.

However, if we consider errors in the second unreported figure,

2. 1/1200, and hence the perturbation index is about 0.03, a

we have o
value which promises reasonable accuracy in plim Bn. On the other hand

the sensitivity coefficients suggest that the relative error in the co-

efficient 8y due to perturbations of this kind in Xg will be of order




Bt o R

RS —
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of magnitude
Y16 - 1 :
s (] S 340 = '98
By 1200

Thus we can expect no accuracy in B> in spite of the small perturbation

index.

The cause of the difficulty is that n must be very large for
Bn to apnroximate its plim with any degree of certainty. Returnina
to (6.3), we see that replacing the matrix n'l(XIEn + EIXn) by its plim
of zero can only be justified if it is small in probability compared with
'lE:En. In particular, the variance of a diagonal element

-1,.T T :
of n (ann + Enxn) is

the plim of n

(n),2
2 lix; 2
%Z E[(xgn)Tegn))2]=4: 1% : &

n n ii*

This variance must be small compared with the square of the corresponding

4.7 4

diagonal element of plim n EnEn’ which is o'. Hence n must at least

satisfy
2
n
or
i
(6.9) n> 4 _z L
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The number o/fi?} is a measure of the relative size of the
perturbations in the i-th column (if the data has been adjusted, JE;}
is approximately the standard deviation of the elements of the i-th
column). For example, if the data is accurate to three figures, then
o/ Vag; 2103 and from (6.9) it follows that n must be at least
four million before the analysis leading to the perturbation index is to
be trusted. If we are concerned with rounding errors on, say, a computer

=8 and n must be in

carrying eight decimal digits, then 0/4'3;} =10
the quadrillions.

As far as the Longley data is concerned, the largest standard
deviation occurs for the variable X, and is about 105. Taking 02=1/12,

we must have
n > 4-12-1010 = 4.8-10!?,

a criterion which the sixteen observations in the Longley data set fall

short of satisfying.

7. Conclusions.

Although we have confined our attention to the Longley data set
in this paper, the techniques that we have used are quite general. If
one can estimate the sizes of the errors in the variables, then the singu-
lar value decomposition provides a way of seeing if they can have disas-

terous effects (we again stress the need for proper scaling of X). The

QR decomposition allows one to search for particularly offensive columns.




-~ 98 -

Perhaps most useful of all are the sensitivity coefficients. Being
derived from a linearization of the problem, they are not valid for
large errors; however, if a problem is locally sensitive, then large
errors are unlikely to correct the difficulty. We add that efficient
software for implementing these techniques exists, and that, properly
done, none of them will cause an order of magnitude change in the costs
of computation.

As regards the perturbation index, we recommend that its use be
eschewed. Although a perturbation index near to or greater than one is
certainly a sign of trouble, it can bé misleadingly small. Moreover, it

measures effects that, in most practical circumstances, can be seen only

when the sample size is astronomically large.
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